
ION DISTRIBUTION FUNCTION AT THE BOUND&RY 

WITH AN ELECTRODE 

I .  P .  S t a k h a n o v  a n d  P .  P .  S h c h e r b i n i n  

The ion distribution function is found in the case in which the Langmuir  layer  freely passes  
the ions incident f rom the plasma while the r e v e r s e  ion flux is zero.  These conditions are  
rea l ized  near the cathode in an arc  discharge and at the surface of a probe operating on the 
ion branch of the charac ter i s t ic .  The e lec t r ic  field outside the Langmuir  layer  is assumed 
small.  We obtain the connection between ion current  and plasma density at the boundarywith 
the electrode,  the express ions  for the ion mean kinetic energy and for the mean energy r e -  
moved from the p lasma by the ion, which differ markedly  from the corresponding expressions 
in the Maxwellian distribution case. 

As is known, at the boundary of the p lasma with the electrode there  a r i ses  the Langmuir layer,  in 
which the e lectr ic  field intensity can be very  large. In many important  cases  the potential drop e~ 9 in the 
Langmuir  layer  is considerably la rger  than the electron T e or ion T tempera tures  and is directed so that 
the electrons flowing f rom the p lasma to the electrode are  re ta rded  by the field. This occurs ,  as an ex-  
ample, near an arc  cathode or  near a probe when the latter operates  on the ion branch of the charac ter i s t ic .  
The ions leaving the p lasma pass  f ree ly  through the Langmuir  layer  and recombine on the electrode surface.  

The r e v e r s e  ion flux f rom the electrode into the p lasma may be assumed zero  in the cases  considered. 
In fact, f irst ,  the surface ionization which gives r i s e  to this flux may not exist  and, secondly, the ions which 
occur  on the wall as a resul t  of surface ionization are  r e t a rded  in the Langmuir  layer  and in the case of a 
large potential drop (e~q~ >> T) the overwhelming major i ty  of them cannot escape into the plasma. M o r e -  
over,  in the arc  regime,  volume ionization is so intensive that surface ionization can usually be neglected 
in comparison.  

In the major i ty  of the important  cases  we can assume that the thickness of the Langmuir  layer  is 
negligibly small  (in compar ison with the mean free path) and we can consider  its effect only in the bound- 
a ry  conditions. The e lectr ic  field in the Langmuir  layer  leads to reflect ion of the electrons incident from 
the plasma,  and therefore  their distribution function pract ical ly  coincides with the Maxwellian function, 
differing from it only in the high-energy region(~eA~ >> Te) , where the ref lect ion condition does not hold. 
On the other hand, the ion distribution function may  differ significantly f rom the Maxwellian function, since 
there is no r e v e r s e  ion flux from the electrode.  

In the following we find the ion distribution at the boundary with the electrode,  which is the p r imary  
objective of the present  study. 

1o As a rule, the degree of ionization near e lect rodes  is small.  Therefore  we must  f i rs t  of all con-  
sider scat ter ing of the ions by the neutral  atoms. Thus, for a low-voltage arc  in cesium at p = 2 to r r  the 
ionmean free path in the atoms is about 10p, while the Coulomb mean free path for the p lasma density near 
the electrode of 1-2 �9 1013 cm -3 and tempera tu re  0.2 eV amounts to 50-100 ~. 

In view of the low degree of ionization the influence of the ions on the atom distribution function can 
be neglected. On the same basis we can assume that the atom flux incident on the wall is prac t ica l ly  equal 
to the ref lected flux. Therefore  the atom distribution function must  coincide with the Maxwellian dis t r ibu-  
tion function with tempera ture  equal to the wall t empera ture ,  while over the distances in question the atom 
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t empera tu re  remains  prac t ica l ly  constant. Thus, the atoms play the role  of a r e se rvo i r  which absorbs the 
energy and momentum of the ions; as a resu l t  of collision with the atoms the ion distribution function r e -  
laxes to the Nfaxwellian distribution with the electrode tempera ture .  

Neglecting Coulomb interaction between ions, we write the kinetic equation in the form 

Ol ee Ol nl~-- 1 (1.1) 
v-g-~- § W--~-~ = ' T 

(n= n(z) = i l (v, x) dv ) 
--co 

Here  f = f  (v, x) is the ion distribution function, x is the coordinate orthogonal to the electrode,  v is 
the velocity component along the axis, E is the e lectr ic  field intensity, N is the mass  of the atom, and T is 
the distribution function relaxation time. 

Since the electron distribution is in equilibrium, their density, which because of quasi-neutral i ty  coin-  
cides with the pl.asma density n, is connected with the electr ic  field by the barometr ic  formula 

z=_T~ ~ d~ (1.3) 
e n d x  

Thus, (1.1) is nonlinear. We assume the e lec t r ic  field small and l inearize (1.1) by replacing the d i s -  
tr ibution function f(v,  x) in the nonlinear t e rm by its equilibrium value n(x)f0 (v). As a resul t  we obtain 

d n  ( a  ~ T e \ (1.4) 

We introduce the function 

u _ - _ ~  ~-  , (u, ~) = ~o/ (--  v, x) § zWon (x) /o (V) ( ~o ' --~V~o ) (1.5) 

Then (1.4) can be written in the form 

0 4 e _~2 - -~N-+~ = ~ n - -  V~ ( ~ ~(u, ~)du=~n(~), ~=t  @a) (1.6) 
- - o o  

We note that an equation analogous to (1.6) was studied in [1] in connection with the calculation of the 
slip coefficient of a ra re f ied  gas. 

2. We seek the solution of (1.6) in the region ~ > 0o Four i e r - t r ans fo rming  with respec t  to ~, we ob-  
tain 

(2.1) 

where �9 (u, k) and N (k) a re  the Four ie r  t r ans fo rms  of the functions r (u, ~ ) and fin (~), respect ively.  We 
assume that r (u, ~) grows algebraical ly  as ~ co and therefore  (2.1) holds for l m k  > 0. Since in th i s reg ion  

(u, k) must  be an analytic function, (2.1) implies that for k = i /u  (u > 0) the following equality holds: 

if ~ ~ - ~  (u, O) (2.2) 

Integrating (2.1) with respect to u and introducing the new complex variable ~ = i/k, we obtain 

'2 

~1 ~-- t  dt ~1 t$ (t, o) N = N(  - ~  - - - ~  ~ d t  
(2.3) 
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Equality (2.3) is valid in the region Re ~ -= u > 0. 
accordance  with the equality 

and using (2.2), we obtain 

Passing to the limit in (2.3) to the real  axis in 

i t 
l i m ~ = P ~ _ u : J z ~ i O ( t - - u ) ,  Im ~1 --->0 

tip(t, O) dt ~(u)=i u e-t~ \ (2.4) 
V ;  ' -  ~ + ~7-; ,--=z d' ) 

- - 9 0  - - 0 0  

Replacing in (2.4) the function r (u, 0) in accordance  with (1.5) through the distribution function f (v, 0) 
and introducing 

I (u) = Vo/0 ( - v ,  o) (2 .5)  

we obtain the nonhomogeneous singular integral  equation for the functionf(u)  for 0 --- u -< oo : 

e ~ o( t! (t) dt e-U~ 

(~) / (u) = ~ ~o ' -  ~ + ~ g (~) 

We note that according to (2.5) 

oo 

(g(~)  -.1~' ,l (-,),+. ~,) (2.6) 
o 

• ](u) du = n(0) (2.7) 
- - 0 3  

For  negative values of the argument  the funct ionf  (u) descr ibes  the incoming par t ic les  and is defined 
by the boundary conditions. Specifically, in the problem in question there is no incoming flux and the re -  
fore g (u) -  0. 

3. For  the solution of (2~ when g(u) - 0, we introduce the function 

c o  

t I t/(t) dt (3.1) r (~1) = -~ -  t - ~  
o 

For  the limiting values of this function above ~+ and below ~_  the branch cut line [0, r we have the 
following relat ions [2]: 

a o  

+ = ~ t f( t) .dt  (3~ r (u) - O_ (u) = ~ iu /  (u), r  (u) + O_ (u) j t - ~  
0 

Using (3.2), we write the singular integral equation (2.6) in the form 

q)+ = A § 1 6 2  (3.3) 
A _  - 

�9 where the distribution function is expressed  through the limiting values of the function �9 on the real  axis, 

2e u' r A+ (u) = ~, (u) ~ i V--~ ue -~' (3.4) 
! (u) = f . ~  A_ ' 

The functions A• (u) can be considered as the limiting values of the function 

a (n) = t + ~ ,L---~et (3.5) 
- - c o  

respect ively ,  above and below the branch cut line ( -  r < u < ~). We see from (305), (3o4), and (2.4) that 

A (~l) = A (--n), A+ (u)* = A_ (u) (3.6) 
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The  funct ion  

Ln - ~  = Arg -h-~-_ = 2i Arc tg ~(u) + 2 i ~ m  (3.7) 

(we s e l e c t  tha t  b ranch  of A r c  tg which  equa l s  z e r o  fo r  u = 0) s a t i s f i e s  the  H o l d e r  cond i t ion  on the  i n t e r v a l  
[0~ ~) ,  and  t h e r e f o r e  the  so lu t i on  of  (3.3) can  be w r i t t e n  in the  f o r m  

e r ( ~ )  t ~ dt / 1 A+ ) 
m ( n ) = c  n~ , r ( q ) = - ~ V ) t - : ~ n x : - _  + 2 m ~ i  

o 

(k=o,  ~ t  . . . .  ) 

(3.8) 

We note  tha t  

~, (u) = t - -  ]/~-~ uv (u) (3.9) 

w h e r e  the  funct ion v(u) i s  t a b u l a t e d  in [3]. Us ing  t a b l e s  of the  funct ion  v(u), we can  show tha t  h(u) v a n i s h e s  
only  a t  one po in t  of  the  i n t e r v a l  [0, oo). F o r  u = 0, X(u) = 1, and  we  s e e  f r o m  (2.4) tha t  a s  u - -  

(u) = - ~ + (3.105 

Thus ,  when u r u n s  t h rough  v a l u e s  f r o m  0 to o% the  funct ion  

A+ l /Eue  -~" 
lnh~_ = 2 i A r c t g  ~(u) 

v a r i e s  in the i n t e r v a l  f r o m  z e r o  to  27ri. T h e r e f o r e ,  in o r d e r  tha t  i n t e g r a l  (3.8) e x i s t  i t  i s  n e c e s s a r y  to se t  
m = - 1 .  A s  a r e s u l t  we ob ta in  

r (~) = - -  i - -  -~- Arc tg ~ - - )  i - 
o 

To f ind the exponen t  k, in (3.8) we expand  �9 (~?) in p o w e r s  of 1 / ~ .  F r o m  (3.1) fo l lows  

( 3 . i i )  

w h e r e  ( u  k )  

@ (~) _ <u> <~> <~> (3.12) 
2 ~  2 ~  2 2~  3 ' �9 " 

i s  the  m o m e n t  of the  d i s t r i b u t i o n  func t ion  f ( u )  

oo 

<ub = I / (u) u ~ du 
o 

(3.135 

We denote  the  f i r s t  m o m e n t  (k = i )  by ( u )  . 

(3.ii) 

It  fo l lows  f r o m  (2.5) tha t  the  ion flux l eav ing  the p l a s m a  i s  

I = - -  (U>Vo (3.14) 

On the  o t h e r  hand,  a s  ~? ~ % exp F(~?) ~ 1  and t h e r e f o r e  in (3,8) we m u s t  se t  

k = i ,  c = - -  t / 2(u> (3o155 

We s h a l l  show tha t  the  func t ion  @07) r e m a i n s  bounded  for  ~? = 0. In fact ,  a s  ~? -~0 we ob t a in  f r o m  

F01 ) = ~ -  Arctg  ]/-~ue-U2% (u) t --dt ~1 ~- --~t Arc tg f N u e - ~  (u) t --dt~ - - l n  A - -  ~----> c o n s t ~  + l n q  (3.16) 
A 0 

and,  t h e r e f o r e ,  fo r  7? = 0 @(~?) i s  bounded  and not equal  to  z e r o .  The  s a m e  m a y  be s a i d  of the  v a l u e  of t he  
d i s t r i b u t i o n  funct ion  f ( u )  f o r  u = 0. C o m p a r i n g  (3.8) and (3.15), we  ob ta in  

<~o ( e r(~) ) 
~(n )  = - ~ -  X (q) x ( n ) =  (3.175 

377 



Hence  in a c c o r d a n c e  with (3.4) we obtain 

<u> ~ X. (u) 
f (u)  = ~ -  e A+(u) (3.185 

The funct ions F(V) and A(~) a r e  g iven by (3.11) and (3.55, r e spec t i ve ly .  

4. In p r inc ip le ,  (3.18) r e p r e s e n t s  the sought  ion d i s t r ibu t ion  funct ion for  ~ = 0. However ,  the  funct ion 
X +  (u) conta ins  an in tegra l  in the s ense  of  the p r inc ipa l  value,  obta ined by the l imi t  p a s s a g e  in (3.115 to the 
r e a l  axis,  which m a k e s  it diff icult  to ana lyze  the r e su l t .  We shal l  show that  the solut ion m a y  be wr i t t en  in 
a d i f ferent  f o r m ,  in which this  dif f icul ty  is e l iminated .  

Setting m = - 1  in (3.8) and cons ide r ing  tha t  

A+ (t) = A_ (--t) (4.1) 

we write 

c o  �9 0 

0 - -  )o 

We examine  the two aux i l i a ry  funct ions  

lnA+(t) nLzti d t - -  _lnA_(t)@ni d t - -  l n A - - a i  dt 
t _ T  I t - - ~  I t - - ~  

0 - - 0 0  

(4.2) 

p = A (n) e q = A(n)  (4 .3)  

the f i r s t  of which we define in the upper  ha l f -p l ane  of  the complex  va r i ab l e  77 and the  second  in the lower  
ha l f -p lane .  Since the l oga r i t hm of a r e a l  pos i t ive  n u m b e r  is r ea l ,  we obtain 

In P+ (u) = In A+ (u) --  ~xi, in Q_ (u) = In A_ (u) + ~i 
(,. > o) 

lnP+(u)  = lnA+(u)  ~ i ,  in Q (u) = l nA  ( u ) - - ~ i  
(. < 0) 

Taking account of (4~ and (4,5), we write (4.2) in the form 

(4.4) 

(4.5) 

In P +  ( t )  d t  ~ In Q_ (t) 2~i {F (n) - -  F (--  q)} = ~ - -  ~ d t  
- - c o  - - o o  

(4.6) 

Further, s ince  

]n P+ (t) = In {2A+ t2e  - €  - -  in 2[ t 2 
in Q_ (t) = In {2A_ t2e -'~} --  In 2 t] ~ 

we obtain  f r o m  (4.6) 

2=i {r (n) + r (- n)} = S In(2A+t2e-'~{) ~ In(2A-t~exi) 
t - -  11 dt - -  t - -  ~ dt 

- - c o  - - o ~  

(4.7) 

We ca lcu la t e  the Cauchy in teg ra l  o f  the funct ion 

In [2A (rl)~12e -'~i] (4.85 

along the contour  shown in Fig, 1. A c c o r d i n g  to (3.55 

A (~) ~ --  l/2q ~, ~1 -+ oc 

and t h e r e f o r e  on the c i r c l e  of l a r g o  r a d i u s  

In [2A (a~)~3~e-~q -~ 0 

As a r e s u l t  the in tegra l  ove r  this  p a r t  of  the contour  d i s appea r s .  The in tegra l  along the s e m i c i r c l e  
a round  the point  ~? = 0 a lso  v a n i s h e s  when the r ad ius  of the c i r c l e  a p p r o a c h e s  ze ro .  Thus  the in tegra l  along 
the  contour  in ques t ion  co inc ides  with the in teg ra l  a long the r e a l  axis .  On the  o ther  hand, it m a y  be shown 
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Fig. 1 

t ha t  in  going a round  the  con tou r  in q u e s t i o n  the hodograph  of the  funct ion  A(~ ) 
does  not e n c l o s e  the  c o o r d i n a t e  o r i g i n  and, consequen t ly ,  h0?) does  not  have  
z e r o s  i n s i d e  the  con tou r .  T h i s  i m p l i e s  tha t  funct ion  (4.8) i s  a n a l y t i c  i n s i d e  the  
con tou r  and  

in (2A+t~e -~) [ 0 for Im ~l < 0 
t --~1 d t  = [ 

--co 2gi In [2A (~1) *1%-m] for Im *1 > 0 
(4.9) 

7.o 

- 3 f \  

7 
0 

1.o l] 
Fig .  2. Ion d i s t r i b u t i o n  
func t ion  a t  b o u n d a r y  
with  e l e c t r o d e :  1) r a t i o  
of ion d i s t r i b u t i o n  
func t ion  to t he  Maxwe l l  
func t ion  ( s c a l e  on the  
r i gh t ) ;  2) ion d i s t r i b u -  
t i on  func t ion  ( s c a l e  on 
the  lef t) ;  3) M a x w e l l  
func t ion  ( s c a l e  on the  
lef t ) .  

Us ing  s i m i l a r  r e a s o n i n g ,  we can  c a l c u l a t e  the  s e c o n d  i n t e g r a l  on the  
r i g h t - h a n d  s i d e  of (4.7). We  ob ta in  

H e n c e  

[r  0]) § r ( - -  ~])] --~ / In [2A (~1) ~12e-=/] 
( In [2A (tl) ~l~e '~i] 

for lm ~ > 0 (4.10) 
for Im ~l < 0  

X (n)X (--n) = 2A (q) (4.11) 

where the function X(7?) is defined in (3.17). 

Using (4.11), we can exclude X(~?) from (3.17) and write (3.18) in the form 

2 <u> t 
f (u )  = 1 - ~  e-~ x ( - -~ )  (4.12) 

S ince  u >0, t h i s  f o r m  of  the  sought  d i s t r i b u t i o n  funct ion  does  not  con ta in  i n t e -  
g r a l s  in the  s e n s e  of the  p r i n c i p a l  va lue .  

5. L e t  us e x a m i n e  the  b e h a v i o r  of  the  d i s t r i b u t i o n  funct ion  f ( u )  a s  u - * 0  
and u-~ .o It follows from (2.6) and (2.7) that 

/ ( 0 ) -  ~(0) (5 .1)  
V~ 

and us ing  (4.12) we ob t a in  

< u p -  ~(o) (5.2) 
V~ 

Set t ing  ~? = 0 in (4.11), we f ind tha t  X (0) = e-if/. Thus  

lim )'(u) = t ,  u-->O 
g-~/2n (0) exp (-- u 2) 

D i f f e r e n t i a t i n g  (4.12), we can  show tha t  the  d e r i v a t i v e  of the  ion d i s t r i b u t i o n  funct ion  as  u ~ 0  b e -  
c o m e s  +r162 l o g a r i t h m i c a l l y ,  i . e . ,  in c o n t r a s t  wi th  the  M a x w e l l i a n  funct ion the m a x i m u m  of  the  ion d i s t r i b u t i o n  
func t ion  is  sh i f t ed  to t he  r i gh t .  A c c o r d i n g  to (3.11), a s  u ~ 

lo 1 ]/'~ te- F ( - -  u) ~-~ -~-,  lo = 1 - -  -~- Arc tg ~ dt 
o 

and with  accoun t  for  (4.12) we f ind 

(,,~ ~ 2 <u) 
/ " J - -  T?-~ (u § lo) e -~2 (5.3) 

The  va lue  of l 0 o b t a i n e d  by n u m e r i c a l  i n t e g r a t i o n  w a s  1.016. 

Thus ,  fo r  s u f f i c i e n t l y  l a r g e  v a l u e s  of u 

g i% (0) exp (-- 

i . e . ,  the  ion d i s t r i b u t i o n  func t ion  i s  e n r i c h e d  with f a s t  p a r t i c l e s .  F i g u r e  2 shows  the  r e s u l t s  of  the n u m e r i -  
ca l  c a l c u l a t i o n  of the  func t ion  ~f2/X ( - u ) ,  equa l  to the  r a t i o  of the  ion d i s t r i b u t i o n  func t ion  to the  M a x w e l l i a n  
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dis t r ibut ion with density n(0) and t e m p e r a t u r e  T (curve  1). The computat ion e r r o r  is less  than 0.1%. We see 
f rom Fig. 2 that the di f ference between the function 1/X (-u)  and the asymptot ic  value u + l 0 is  not large,  
and t he re fo re  the fo rmula  desc r ibes  the distr ibution function well over  p rac t i ca l ly  the en t i re  in terva l  of 
ve loc i t i es  u > 0. This  f igure  also shows the curve  of the ion distr ibution function when normal ized  to unit 
density (curve  2), 

(0) / (u) - -  x ( -  ~) 

Also shown for  compar i son  is  the Maxwell dis t r ibut ion ~-1/2 exp (-u2). 

Let  us ca lcula te  the m o m e n t s  of the distr ibution function. Fo rmula  (5.2) together  with (3.14) makes  
it  poss ib le  to find the connection between the ion flux and p l a s m a  density at  the boundary with the e lec t rode:  

_n(~ ~ V ( psr]',,~ (5.4) 

Thus the magnitude of the flux for a given plasma density is larger by about a factor of 2.5 than the 
flux calculated under the Maxwell distribution assumption. Using the distribution function (5.3), we find 
I = --0.75n(O)v0, which is v e r y  c lose  to (5.4). Expanding the function X0?) in powers  of 1/~?, we obtain 

find 

l0 11 + l0 ~ / 

co 

o 

(5.5) 

Substituting expansions (3.12) and (5.5) into (3.17) and equating coeff icients  of like powers  of  1/~?, we 

The value of l t equals 0.749. The mean  kinetic energy  cor responding  to the x -componen t  of the v e l o c -  
ity is e x p r e s s e d  through ( u 2 ) and equals 

T 4 
n(0) F z  

Thus,  the mean  ion energy  near  the e lec t rode  is about 0.7T, while at large dis tances  it equals T/2. 
The mean  energy  c a r r i e d  by the ion to the e lec t rode  is 

(t + i--~ <u~>) T , 

which yields 2.27T in place of  2T in the Maxwell distr ibution case .  

The numer ica l  calculat ions of the coeff icients  l0 and ll and the function X (-u)  we re  made  on an M-20 
computer .  
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