ION DISTRIBUTION FUNCTION AT THE BOUNDARY
WITH AN ELECTRODE
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The ion distribution function is found in the case in which the Langmuir layer freely passes
the ions incident from the plasma while the reverse ion flux is zero. These conditions are
realized near the cathode in an arc discharge and at the surface of a probe operating on the
ion branch of the characteristic. The electric field outside the Langmuir layer is assumed
small. We obtain the connection between ion current and plasma density at the boundary with
the electrode, the expressions for the ion mean kinetic energy and for the mean energy re-
moved from the plasma by the ion, which differ markedly from the corresponding expressions
in the Maxwellian distribution case.

As is known, at the boundary of the plasma with the electrode there arises the Langmuir layer, in
which the electric field intensity can be very large. In many important cases the potential drop eAg in the
Langmuir layer is considerably larger than the electron T, or ion T temperatures and is directed so that
the electrons flowing frem the plasma to the electrode are retarded by the field. This occurs, as an ex-~
ample, near an arc cathode or near a probe when the latter operates on the ion branch of the characteristic,
The ions leaving the plasma pass freely through the Langmuir layer and recombine on the electrode surface.

The reverse ion flux from the electrode into the plasma may be assumed zero in the cases congidered.
In fact, first, the surface ionization which gives rise to this flux may not exist and, secondly, the ions which
occur on the wall as a result of surface ionization are retarded in the Langmuir layer and in the case of a
large potential drop (eA¢ > T) the overwhelming majority of them cannot escape into the plasma. More-
over, in the arc regime, volume ionization is so intensive that surface ionization can usually be neglected
in comparison,

In the majority of the important cases we can assume that the thickness of the Langmuir layer is
negligibly small (in comparison with the mean free path) and we can consider its effect only in the bound~
ary conditions. The electric field in the Langmuir layer leads to reflection of the electrons incident from
the plasma, and therefore their distribution function practically coincides with the Maxwellian function,
differing from it only in the high-energy region{~eA ¢ » T,), where the reflection condition does not hold.
On the other hand, the ion distribution function may differ significantly from the Maxwellian function, since
there is no reverse ion flux from the electrode.

In the following we find the ion distribution at the boundary with the electrode, which is the primary
objective of the present study.

1. As a rule,the degree of ionization near electrodes is small. Therefore we must first of all con-
sider scattering of the ions by the neutral atoms. Thus, for a low-voltage arc in cesium at p = 2 torr the
ionmean free path in the atoms is about 10u, while the Coulomb mean free path for the plasma density near
the electrode of 1-2+10%¥ ¢cm= and temperature 0.2 eV amounts to 50-100 .

In view of the low degree of ionization the influence of the ions on the atom distribution function can
be neglected. On the same basis we can assume that the atom flux incident on the wall is practically equal
" to the reflected flux, Therefore the atom distribution function must coincide with the Maxwellian distribu-
tion function with temperature equal to the wall temperature, while over the distances in question the atom
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temperature remains practically constant. Thus, the atoms play the role of a reservoir which absorbs the
energy and momentum of the ions; as a result of collision with the atoms the ion distribution function re-
laxes to the Maxwellian distribution with the electrode temperature.

Neglecting Coulomb interaction between ions, we write the kinetic equation in the form
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Here f =f (v, x) is the ion distribution function, x is the coordinate orthogonal to the electrode, v is
the velocity component along the axis, E is the electric field intensity, M is the mass of the atom, and 7 is

the distribution function relaxation time,

Since the electron distribution is in equilibrium, their density, which because of quasi-neutrality coin-
cides with the plasma density n, is connected with the electric field by the barometric formula

g Te 1 dn (1.3)

e n dzx

Thus, (1.1) is nonlinear. We assume the electric field small and linearize (1.1) by replacing the dis-
tribution function f(v, x) in the nonlinear term by its equilibrium value n(x) f; (v). As a result we obtain

'I:U—aaf7 + f=nfy— ravg—;lfo (Cx: Te) (1.4)

We introduce the function
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Then (1.4) can be written in the form
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We note that an equation analogous to (1.6) was studied in [1] in connection with the calculation of the
slip coefficient of a rarefied gas.

2. We seek the solution of (1.6) in the region ¢ > 0. Fourier-transforming with respect to £, we ob-
tain

P (u, k) — ﬁ (%e*“zl\f (k) — Vuﬁw @, 0)) (2.1)

where ¥ (u, k) and N (k) are the Fourier transforms of the functions ¥ (u, £) and 8n ( £), respectively. We
assume that ¢ (u, £) grows algebraically as {— « and therefore (2.1) holds for Im k > 0. Since in thisregion
¥ (u, k) must be an analytic function, (2.1) implies that for k = i/u (u > 0) the following equality holds:
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Integrating (2.1) with respect to u and introducing the new complex variable 7 = i/k, we obtain
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Equality (2.3) is valid in the region Re = u > 0, Passing to the limit in (2.3) to the real axis in
accordance with the equality

St 1 .
llmf—_—_ﬁzpmimé(t—u), Imn—0
and using (2.2), we obtain
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Replacing in (2.4) the function ¢ (u, 0) in accordance with (1.5) through the distribution function f (v, 0)
and introducing

f (W) = wfo (—2, 0) (2.5)

we obtain the nonhomogeneous singular integral equation for the function f(u) for 0 =u = «:
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We note that according to (2.5)
\ Fdu=n () (2.7)

For negative values of the argument the function f (u) describes the incoming particles and is defined
by the boundary conditions., Specifically, in the problem in question there is no incoming flux and there-
fore g(w)= 0,

3. For the solution of (2.6) when g(u) = 0, we introduce the function

1
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For the limiting values of this function above &, and below ®_ the branch cut line [0, <), we have the
following relations [2]:
@, () — O_(u) = minf (1), D,u)+O_() = S HO g (3.2)

t—u
0

Using (3.2), we write the singular integral equation (2.6) in the form
A
D, = FED (3.3)

* where the distribution function is expressed through the limiting values of the function ® on the real axis,

f =222 A @ =h@E i Ve (3.0

The functions A, (u) can be considered as the limiting values of the function

o0
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respectively, above and below the branch cut line (— o < u < «), We see from (3.5), (3.4), and (2.4) that

A () = A(—m), A, (w* =AW (3.6)
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The function

Ln At =Arg Ay ~ = 2iArctg V; ue_ +2mm (3.7

(we select that branch of Arc tg which equals zero for u = 0) satisfies the Holder condition on the interval
[0, =), and therefore the solution of (3.3) can be written in the form
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We note that
A =1 —Vauo @ (3.9)

where the function v(u) is tabulated in [3]. Using tables of the function v{u), we can show that A(u) vanishes
only at one point of the interval [0, ). For u =0, Alu) = 1, and we see from (2.4) that as u— «

1 1 3,10
Thus, when u runs through values from 0 to «, the function
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varies in the interval from zero to 27i, Therefore, in order that integral (3.8) exist it is necessary to set
m =-1. As a result we obtain
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To find the exponent k, in (3.8) we expand ® () in powers of 1 /4. From (3.1) follows

T P o N e S (8.12)

where (uf) is the moment of the distribution function Flw
Uty = S @) uk du (3.13)
0

We denote the first moment (k = 1) by {(ul . It follows from (2.5) that the ion flux leaving the plasma is
I = — <u>vo (3:14:)
On the other hand, as n — «x, exp I'(yj) —1 and therefore in (3.8) we must set

k=1, c=—1/2uw (3.15)

We shall show that the function &(7) remains bounded for n = 0., In fact, as 5 —0 we obtain from
(3.11)
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and, therefore, for n = 0 &(n) is bounded and not equal to zero. The same may be said of the value of the
distribution function f(u) for u= 0. Comparing (3.8) and (3.15), we obtain

om=Lxm  (rm=--2") (3.17)

377



Hence in accordance with (3.4) we obtain

2 X+
flu) = e Ty (3.18)

The functions I'(n) and A(n) are given by (3.11) and (3.5), respectively.

4, In principle, (3.18) represents the sought ion distribution function for ¢ = 0. However, the function
‘X, (u) contains an integral in the sense of the principal value, obtained by the limit passage in (3.11) to the
real axis, which makes it difficult to analyze the result. We shall show that the solution may be written in
a different form, in which this difficulty is eliminated,

Setting m = —1 in (3.8) and considering that

A, () = A_ (=) (4.1)
we write
o .0 o] o
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We examine the two auxiliary functions

P ) = A (’q) I?]alz e”'*"', Q () = A (n) l‘%eﬂi (4.3)

the first of which we define in the upper half-plane of the complex variable n and the second in the lower
half-plane. Since the logarithm of a real positive number is real, we obtain

In P, (u) = In A, (u) — =i, In Q_ (v) = 1n A_ (u) + mi (4.4)
(>0)

InP, (w)=1nA, (w +ai, InQ (w)=InA_(u) —mni (4.5)
(u<0)

Taking account of (4.4) and (4.5), we write (4.2) in the form
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Further, since
In P, () = In {2A, e} — In 2] ¢?
In Q_ () = In {2A_ £} — In 22
we obtain from (4.6)
20 (T (1) + D(—my = { BEALED) gy { REA=ED) 4 (4.7)
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We calculate the Cauchy integral of the function
In[2A (nin2e™] (4,8)

along the contour shown in Fig, 1, According to (3.5)
A ) =—1/29% 1 oo
and therefore on the circle of large radius
In{2A (m)n%e ™1 ~0

Asg a result the integral over this part of the contour disappears. The integral along the semicircle
around the point n = 0 also vanishes when the radius of the circle approaches zero. Thus the integral along
the contour in question coincides with the integral along the real axis. On the other hand, it may be shown
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that in going around the contour in question the hodograph of the function A{n)
does not enclose the coordinate origin and, consequently, A(n) does not have
zeros inside the contour. This implies that function (4.8) is analytic inside the
contour and

°S° In (AL o { 0 for I 1 < 0 (4.9)
ot 208 In [2A ()2 ™ forImn >0

Using similar reasoning, we can calculate the second integral on the
right-hand side of (4.7). We obtain

[T (n) + T (—m)] = {“’ (A yme™] - for lmn>0 (4.10)
In[2A(n)n%™]  for Imn <0
Hence
X (MX (—) =20 (n) (4.11)

where the function X(n) is defined in (3.17).
Using (4.11), we can exclude X(n) from (3.17) and write (3.18) in the form

f) =22 e

T T Ew (4.12)

Since u >0, this form of the sought distribution function does not contain inte-
grals in the sense of the principal value.

5, Let us examine the behavior of the distribution function £ (u) as u —0
and u— e, It follows from (2.6) and (2.7) that

FlO)= 22 (5.1)
and using (4.12) we obtain
(uy = ”};05) (5.2)
Setting 1 = 0 in (4.11), we find that X (0) = V2, Thus
lim——J® 1, u—0

a2, (0) exp (— ©?)

Differentiating (4.12), we can show that the derivative of the ion distribution function as u —0 be-
comes +o logarithmically, i.e., in contrast with the Maxwellian function the maximum of the ion distribution
function is shifted to the right. According to (3.11), as u—

0 — g
I‘(—u)z%‘, ZO=S{1—-—I1E—Arcth;‘(tf) }dt

[

and with account for (4.12) we find

2D (4 -l e (5.3)
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The value of [; obtained by numerical integration was 1,016,

Thus, for sufficiently large values of u

S £ B— )z]fi(u, + o)

a0 (0) exp (— u?

i.e., the ion distribution function is enriched with fast particles. Figure 2 shows the results of the numeri-
cal calculation of the function v2/X (—u), equal to the ratio of the ion distribution function to the Maxwellian
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distribution with density n(0) and temperature T (curve 1), The computation error is less than 0.1%. We see
from Fig, 2 that the difference between the function 1/X(—u) and the asymptotic value u + [, is not large,
and therefore the formula describes the distribution function well over practically the entire interval of
velocities u > 0. This figure also shows the curve of the ion distribution function when normalized to unit
density (curve 2),

1 2 \V2 e
EoRCR C N =
Also shown for comparison is the Maxwell distribution r=1/2 exp (—u?).

Let us calculate the moments of the distribution function., Formula (5.2) together with (3.14) makes
it possible to find the connection between the ion flux and plasma density at the boundary with the electrode:

n](/O_) vy = ———n 0 <>V 2a <<v> = [__] ) (5.4)

Thus the magnitude of the flux for a given plasma density is larger by about a factor of 2.5 than the

flux calculated under the Maxwell distribution assumption. Using the distribution function (5.3), we find
I =-0.75n(0)v,, which is very close to (5.4). Expanding the function X(n) in powers of 1/n, we obtain

X()=—(t+ o 2R L)

¢ 1 Vate ™
0

(5.5)

Substituting expansions (3.12) and (5.5) into (3.17) and equating coefficients of like powers of 1/1, we
find

ey =locuy, = (3= 44w

The value of I; equals 0.749. The mean kinetic energy corresponding to the x-component of the veloc-
ity is expressed through {(u®*) and equals

n(O W= = 1/2

Thus, the mean ion energy near the electrode is about 0,7T, while at large distances it equals T/2,
The mean energy carried by the ion to the electrode is

(B r=(1+u+5)7

which yields 2.27T in place of 2T in the Maxwell distribution case,

The numerical calculations of the coefficients [; and /; and the function X (—u) were made on an M-20
computer.
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